Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 3.450
1.
Virol J ; 21(1): 101, 2024 May 01.
Article En | MEDLINE | ID: mdl-38693578

The Cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) serves as a key innate immune signaling axis involved in the regulation of various human diseases. It has been found that cGAS-STING pathway can recognize a variety of cytosolic double-stranded DNA (dsDNA), contributing to cause a robust type I interferon response thereby affecting the occurrence and progression of viral infection. Accumulating evidence indicates RNA virus-derived components play an important role in regulating cGAS-STING signaling, either as protective or pathogenic factors in the pathogenesis of diseases. Thus, a comprehensive understanding of the function of RNA virus-derived components in regulating cGAS-STING signaling will provide insights into developing novel therapies. Here, we review the existing literature on cGAS-STING pathway regulated by RNA virus-derived components to propose insights into pharmacologic strategies targeting the cGAS-STING pathway.


Immunity, Innate , Membrane Proteins , Nucleotidyltransferases , RNA Viruses , Signal Transduction , Nucleotidyltransferases/metabolism , Nucleotidyltransferases/genetics , Humans , Membrane Proteins/metabolism , Membrane Proteins/genetics , RNA Viruses/physiology , RNA Viruses/immunology , Animals , Interferon Type I/metabolism
2.
J Clin Invest ; 134(9)2024 May 01.
Article En | MEDLINE | ID: mdl-38690736

Pain and inflammation are biologically intertwined responses that warn the body of potential danger. In this issue of the JCI, Defaye, Bradaia, and colleagues identified a functional link between inflammation and pain, demonstrating that inflammation-induced activation of stimulator of IFN genes (STING) in dorsal root ganglia nociceptors reduced pain-like behaviors in a rodent model of inflammatory pain. Utilizing mice with a gain-of-function STING mutation, Defaye, Bradaia, and colleagues identified type I IFN regulation of voltage-gated potassium channels as the mechanism of this pain relief. Further investigation into mechanisms by which proinflammatory pathways can reduce pain may reveal druggable targets and insights into new approaches for treating persistent pain.


Ganglia, Spinal , Membrane Proteins , Pain , Animals , Mice , Ganglia, Spinal/metabolism , Pain/genetics , Pain/metabolism , Pain/immunology , Membrane Proteins/genetics , Membrane Proteins/metabolism , Humans , Nociceptors/metabolism , Inflammation/genetics , Inflammation/immunology , Inflammation/metabolism , Potassium Channels, Voltage-Gated/genetics , Potassium Channels, Voltage-Gated/metabolism , Potassium Channels, Voltage-Gated/immunology , Interferon Type I/metabolism , Interferon Type I/genetics , Interferon Type I/immunology
3.
PLoS Pathog ; 20(4): e1012137, 2024 Apr.
Article En | MEDLINE | ID: mdl-38603763

Interleukin-1 (IL-1) signaling is essential for controlling virulent Mycobacterium tuberculosis (Mtb) infection since antagonism of this pathway leads to exacerbated pathology and increased susceptibility. In contrast, the triggering of type I interferon (IFN) signaling is associated with the progression of tuberculosis (TB) disease and linked with negative regulation of IL-1 signaling. However, mice lacking IL-1 signaling can control Mtb infection if infected with an Mtb strain carrying the rifampin-resistance conferring mutation H445Y in its RNA polymerase ß subunit (rpoB-H445Y Mtb). The mechanisms that govern protection in the absence of IL-1 signaling during rpoB-H445Y Mtb infection are unknown. In this study, we show that in the absence of IL-1 signaling, type I IFN signaling controls rpoB-H445Y Mtb replication, lung pathology, and excessive myeloid cell infiltration. Additionally, type I IFN is produced predominantly by monocytes and recruited macrophages and acts on LysM-expressing cells to drive protection through nitric oxide (NO) production to restrict intracellular rpoB-H445Y Mtb. These findings reveal an unexpected protective role for type I IFN signaling in compensating for deficiencies in IL-1 pathways during rpoB-H445Y Mtb infection.


Bacterial Proteins , DNA-Directed RNA Polymerases , Interferon Type I , Mycobacterium tuberculosis , Rifampin , Signal Transduction , Interferon Type I/metabolism , Animals , Mice , Rifampin/pharmacology , DNA-Directed RNA Polymerases/metabolism , DNA-Directed RNA Polymerases/genetics , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Mutation , Mice, Inbred C57BL , Drug Resistance, Bacterial/genetics , Tuberculosis/microbiology , Tuberculosis/immunology , Tuberculosis/genetics , Mice, Knockout
4.
PLoS Pathog ; 20(4): e1012136, 2024 Apr.
Article En | MEDLINE | ID: mdl-38620034

African swine fever (ASF) is an acute, hemorrhagic, and severe infectious disease caused by the ASF virus (ASFV). ASFV has evolved multiple strategies to escape host antiviral immune responses. Here, we reported that ASFV pB318L, a trans-geranylgeranyl-diphosphate synthase, reduced the expression of type I interferon (IFN-I) and IFN-stimulated genes (ISGs). Mechanically, pB318L not only interacted with STING to reduce the translocation of STING from the endoplasmic reticulum to the Golgi apparatus but also interacted with IFN receptors to reduce the interaction of IFNAR1/TYK2 and IFNAR2/JAK1. Of note, ASFV with interruption of B318L gene (ASFV-intB318L) infected PAMs produces more IFN-I and ISGs than that in PAMs infected with its parental ASFV HLJ/18 at the late stage of infection. Consistently, the pathogenicity of ASFV-intB318L is attenuated in piglets compared with its parental virus. Taken together, our data reveal that B318L gene may partially affect ASFV pathogenicity by reducing the production of IFN-I and ISGs. This study provides a clue to design antiviral agents or live attenuated vaccines to prevent and control ASF.


African Swine Fever Virus , African Swine Fever , Interferon Type I , Animals , Swine , Farnesyltranstransferase/metabolism , Viral Proteins/metabolism , Nucleotidyltransferases/genetics , Nucleotidyltransferases/metabolism , Interferon Type I/genetics , Interferon Type I/metabolism , Signal Transduction
5.
Sci Signal ; 17(831): eadg7867, 2024 Apr 09.
Article En | MEDLINE | ID: mdl-38593156

Type I interferons (IFNs) are critical for the antiviral immune response, and fine-tuning type I IFN production is critical to effectively clearing viruses without causing harmful immunopathology. We showed that the transcription factor Miz1 epigenetically repressed the expression of genes encoding type I IFNs in mouse lung epithelial cells by recruiting histone deacetylase 1 (HDAC1) to the promoters of Ifna and Ifnb. Loss of function of Miz1 resulted in augmented production of these type I IFNs during influenza A virus (IAV) infection, leading to improved viral clearance in vitro and in vivo. IAV infection induced Miz1 accumulation by promoting the cullin-4B (CUL4B)-mediated ubiquitylation and degradation of the E3 ubiquitin ligase Mule (Mcl-1 ubiquitin ligase E3; also known as Huwe1 or Arf-BP1), which targets Miz1 for degradation. As a result, Miz1 accumulation limited type I IFN production and favored viral replication. This study reveals a previously unrecognized function of Miz1 in regulating antiviral defense and a potential mechanism for influenza viruses to evade host immune defense.


Influenza A virus , Influenza, Human , Interferon Type I , Mice , Animals , Humans , Influenza A virus/physiology , Ubiquitination , Epithelial Cells/metabolism , Gene Expression Regulation , Virus Replication , Interferon Type I/genetics , Interferon Type I/metabolism , Influenza, Human/genetics , Interferons/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , Protein Inhibitors of Activated STAT/genetics , Protein Inhibitors of Activated STAT/metabolism
6.
J Exp Med ; 221(7)2024 Jul 01.
Article En | MEDLINE | ID: mdl-38661718

Chemokines guide immune cells during their response against pathogens and tumors. Various techniques exist to determine chemokine production, but none to identify cells that directly sense chemokines in vivo. We have generated CCL3-EASER (ErAse, SEnd, Receive) mice that simultaneously report for Ccl3 transcription and translation, allow identifying Ccl3-sensing cells, and permit inducible deletion of Ccl3-producing cells. We infected these mice with murine cytomegalovirus (mCMV), where Ccl3 and NK cells are critical defense mediators. We found that NK cells transcribed Ccl3 already in homeostasis, but Ccl3 translation required type I interferon signaling in infected organs during early infection. NK cells were both the principal Ccl3 producers and sensors of Ccl3, indicating auto/paracrine communication that amplified NK cell response, and this was essential for the early defense against mCMV. CCL3-EASER mice represent the prototype of a new class of dual fluorescence reporter mice for analyzing cellular communication via chemokines, which may be applied also to other chemokines and disease models.


Cell Communication , Chemokine CCL3 , Killer Cells, Natural , Muromegalovirus , Protein Biosynthesis , Transcription, Genetic , Animals , Mice , Muromegalovirus/physiology , Chemokine CCL3/metabolism , Chemokine CCL3/genetics , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , Genes, Reporter , Mice, Inbred C57BL , Herpesviridae Infections/immunology , Herpesviridae Infections/genetics , Mice, Transgenic , Interferon Type I/metabolism , Signal Transduction
7.
Front Immunol ; 15: 1320444, 2024.
Article En | MEDLINE | ID: mdl-38605949

Enhanced interferon α (IFNα) production has been implicated in the pathogenesis of systemic lupus erythematosus (SLE). We previously reported IFNα production by monocytes upon activation of the stimulator of IFN genes (STING) pathway was enhanced in patients with SLE. We investigated the mechanism of enhanced IFNα production in SLE monocytes. Monocytes enriched from the peripheral blood of SLE patients and healthy controls (HC) were stimulated with 2'3'-cyclic GAMP (2'3'-cGAMP), a ligand of STING. IFNα positive/negative cells were FACS-sorted for RNA-sequencing analysis. Gene expression in untreated and 2'3'-cGAMP-stimulated SLE and HC monocytes was quantified by real-time PCR. The effect of GATA binding protein 4 (GATA4) on IFNα production was investigated by overexpressing GATA4 in monocytic U937 cells by vector transfection. Chromatin immunoprecipitation was performed to identify GATA4 binding target genes in U937 cells stimulated with 2'3'-cGAMP. Differentially expressed gene analysis of cGAS-STING stimulated SLE and HC monocytes revealed the enrichment of gene sets related to cellular senescence in SLE. CDKN2A, a marker gene of cellular senescence, was upregulated in SLE monocytes at steady state, and its expression was further enhanced upon STING stimulation. GATA4 expression was upregulated in IFNα-positive SLE monocytes. Overexpression of GATA4 enhanced IFNα production in U937 cells. GATA4 bound to the enhancer region of IFIT family genes and promoted the expressions of IFIT1, IFIT2, and IFIT3, which promote type I IFN induction. SLE monocytes with accelerated cellular senescence produced high levels of IFNα related to GATA4 expression upon activation of the cGAS-STING pathway.


GATA4 Transcription Factor , Gene Expression , Interferon-alpha , Lupus Erythematosus, Systemic , Humans , GATA4 Transcription Factor/genetics , GATA4 Transcription Factor/metabolism , Interferon Type I/metabolism , Interferon-alpha/metabolism , Lupus Erythematosus, Systemic/metabolism , Monocytes/metabolism
8.
Cell Mol Life Sci ; 81(1): 199, 2024 Apr 29.
Article En | MEDLINE | ID: mdl-38683377

Tyrosine kinase 2 (TYK2) is involved in type I interferon (IFN-I) signaling through IFN receptor 1 (IFNAR1). This signaling pathway is crucial in the early antiviral response and remains incompletely understood on B cells. Therefore, to understand the role of TYK2 in B cells, we studied these cells under homeostatic conditions and following in vitro activation using Tyk2-deficient (Tyk2-/-) mice. Splenic B cell subpopulations were altered in Tyk2-/- compared to wild type (WT) mice. Marginal zone (MZ) cells were decreased and aged B cells (ABC) were increased, whereas follicular (FO) cells remained unchanged. Likewise, there was an imbalance in transitional B cells in juvenile Tyk2-/- mice. RNA sequencing analysis of adult MZ and FO cells isolated from Tyk2-/- and WT mice in homeostasis revealed altered expression of IFN-I and Toll-like receptor 7 (TLR7) signaling pathway genes. Flow cytometry assays corroborated a lower expression of TLR7 in MZ B cells from Tyk2-/- mice. Splenic B cell cultures showed reduced proliferation and differentiation responses after activation with TLR7 ligands in Tyk2-/- compared to WT mice, with a similar response to lipopolysaccharide (LPS) or anti-CD40 + IL-4. IgM, IgG, IL-10 and IL-6 secretion was also decreased in Tyk2-/- B cell cultures. This reduced response of the TLR7 pathway in Tyk2-/- mice was partially restored by IFNα addition. In conclusion, there is a crosstalk between TYK2 and TLR7 mediated by an IFN-I feedback loop, which contributes to the establishment of MZ B cells and to B cell proliferation and differentiation.


B-Lymphocytes , Interferon Type I , Mice, Inbred C57BL , Mice, Knockout , Signal Transduction , Spleen , TYK2 Kinase , Toll-Like Receptor 7 , Animals , Spleen/cytology , Spleen/metabolism , B-Lymphocytes/metabolism , B-Lymphocytes/immunology , Mice , Toll-Like Receptor 7/metabolism , Toll-Like Receptor 7/genetics , TYK2 Kinase/metabolism , TYK2 Kinase/genetics , Interferon Type I/metabolism , Cell Differentiation , Cell Proliferation , Membrane Glycoproteins/metabolism , Membrane Glycoproteins/genetics , Cells, Cultured
9.
Curr Opin Immunol ; 86: 102413, 2024 Feb.
Article En | MEDLINE | ID: mdl-38608537

Type I and type III interferons (IFNs) are major components in activating the innate immune response. Common to both are two distinct receptor chains (IFNAR1/IFNAR2 and IFNLR1/IL10R2), which form ternary complexes upon binding their respective ligands. This results in close proximity of the intracellularly associated kinases JAK1 and TYK2, which cross phosphorylate each other, the associated receptor chains, and signal transducer and activator of transcriptions, with the latter activating IFN-stimulated genes. While there are clear similarities in the biological responses toward type I and type III IFNs, differences have been found in their tropism, tuning of activity, and induction of the immune response. Here, we focus on how these differences are embedded in the structure/function relations of these two systems in light of the recent progress that provides in-depth information on the structural assembly of these receptors and their functional implications and how these differ between the mouse and human systems.


Interferon Type I , Interferons , Humans , Animals , Mice , Receptors, Interferon/metabolism , Receptor, Interferon alpha-beta/genetics , Signal Transduction/genetics , Immunity, Innate , Interferon Type I/metabolism
10.
J Clin Immunol ; 44(4): 104, 2024 Apr 22.
Article En | MEDLINE | ID: mdl-38647550

PURPOSE: Auto-antibodies (auto-abs) to type I interferons (IFNs) have been identified in patients with life-threatening coronavirus disease 2019 (COVID-19), suggesting that the presence of auto-abs may be a risk factor for disease severity. We therefore investigated the mechanism underlying COVID-19 exacerbation induced by auto-abs to type I IFNs. METHODS: We evaluated plasma from 123 patients with COVID-19 to measure auto-abs to type I IFNs. We performed single-cell RNA sequencing (scRNA-seq) of peripheral blood mononuclear cells from the patients with auto-abs and conducted epitope mapping of the auto-abs. RESULTS: Three of 19 severe and 4 of 42 critical COVID-19 patients had neutralizing auto-abs to type I IFNs. Patients with auto-abs to type I IFNs showed no characteristic clinical features. scRNA-seq from 38 patients with COVID-19 revealed that IFN signaling in conventional dendritic cells and canonical monocytes was attenuated, and SARS-CoV-2-specific BCR repertoires were decreased in patients with auto-abs. Furthermore, auto-abs to IFN-α2 from COVID-19 patients with auto-abs recognized characteristic epitopes of IFN-α2, which binds to the receptor. CONCLUSION: Auto-abs to type I IFN found in COVID-19 patients inhibited IFN signaling in dendritic cells and monocytes by blocking the binding of type I IFN to its receptor. The failure to properly induce production of an antibody to SARS-CoV-2 may be a causative factor of COVID-19 severity.


Autoantibodies , COVID-19 , Interferon Type I , Myeloid Cells , Female , Humans , Male , Autoantibodies/immunology , Autoantibodies/blood , COVID-19/immunology , Dendritic Cells/immunology , Interferon Type I/immunology , Interferon Type I/metabolism , Myeloid Cells/immunology , SARS-CoV-2/immunology , Severity of Illness Index , Signal Transduction/immunology
11.
J Med Virol ; 96(3): e29523, 2024 Mar.
Article En | MEDLINE | ID: mdl-38483060

Tight control of the type I interferon (IFN) signaling pathway is critical for maintaining host innate immune responses, and the ubiquitination and deubiquitination of signaling molecules are essential for signal transduction. Deubiquitinase ubiquitin-specific protein 19 (USP19) is known to be involved in deubiquitinating Beclin1, TRAF3, and TRIF for downregulation of the type I IFN signaling. Here, we show that SIAH1, a cellular E3 ubiquitin ligase that is involved in multicellular pathway, is a potent positive regulator of virus-mediated type I IFN signaling that maintains homeostasis within the antiviral immune response by targeting USP19. In the early stages of virus infection, stabilized SIAH1 directly interacts with the USP19 and simultaneously mediates K27-linked ubiquitination of 489, 490, and 610 residues of USP19 for proteasomal degradation. Additionally, we found that USP19 specifically interacts with MAVS and deubiquitinates K63-linked ubiquitinated MAVS for negative regulation of type I IFN signaling. Ultimately, we identified that SIAH1-mediated degradation of USP19 reversed USP19-mediated deubiquitination of MAVS, Beclin1, TRAF3, and TRIF, resulting in the activation of antiviral immune responses. Taken together, these findings provide new insights into the molecular mechanism of USP19 and SIAH1, and suggest a critical role of SIAH1 in antiviral immune response and homeostasis.


Interferon Type I , Ubiquitin , Humans , Ubiquitin/metabolism , TNF Receptor-Associated Factor 3/genetics , Beclin-1 , Ubiquitination , Immunity, Innate , Interferon Type I/metabolism , Deubiquitinating Enzymes/genetics , Deubiquitinating Enzymes/metabolism , Adaptor Proteins, Vesicular Transport , Endopeptidases/genetics , Endopeptidases/metabolism
12.
Front Immunol ; 15: 1329805, 2024.
Article En | MEDLINE | ID: mdl-38481993

mRNA vaccine technologies introduced following the SARS-CoV-2 pandemic have highlighted the need to better understand the interaction of adjuvants and the early innate immune response. Type I interferon (IFN-I) is an integral part of this early innate response that primes several components of the adaptive immune response. Women are widely reported to respond better than men to tri- and quadrivalent influenza vaccines. Plasmacytoid dendritic cells (pDCs) are the primary cell type responsible for IFN-I production, and female pDCs produce more IFN-I than male pDCs since the upstream pattern recognition receptor Toll-like receptor 7 (TLR7) is encoded by X chromosome and is biallelically expressed by up to 30% of female immune cells. Additionally, the TLR7 promoter contains several putative androgen response elements, and androgens have been reported to suppress pDC IFN-I in vitro. Unexpectedly, therefore, we recently observed that male adolescents mount stronger antibody responses to the Pfizer BNT162b2 mRNA vaccine than female adolescents after controlling for natural SARS-CoV-2 infection. We here examined pDC behaviour in this same cohort to determine the impact of IFN-I on anti-spike and anti-receptor-binding domain IgG titres to BNT162b2. Through flow cytometry and least absolute shrinkage and selection operator (LASSO) modelling, we determined that serum-free testosterone was associated with reduced pDC IFN-I, but contrary to the well-described immunosuppressive role for androgens, the most bioactive androgen dihydrotestosterone was associated with increased IgG titres to BNT162b2. Also unexpectedly, we observed that co-vaccination with live attenuated influenza vaccine boosted the magnitude of IgG responses to BNT162b2. Together, these data support a model where systemic IFN-I increases vaccine-mediated immune responses, yet for vaccines with intracellular stages, modulation of the local IFN-I response may alter antigen longevity and consequently improve vaccine-driven immunity.


Influenza Vaccines , Interferon Type I , Humans , Male , Female , Adolescent , Interferon-alpha , Influenza Vaccines/metabolism , Toll-Like Receptor 7/metabolism , Androgens/metabolism , BNT162 Vaccine , mRNA Vaccines , Interferon Type I/metabolism , Vaccination , Dendritic Cells , Immunoglobulin G/metabolism
13.
Antiviral Res ; 225: 105875, 2024 May.
Article En | MEDLINE | ID: mdl-38552910

The DEAD-box (DDX) family comprises RNA helicases characterized by the conserved sequence D(Asp)-E(Glu)-A(Ala)-D(Asp), participating in various RNA metabolism processes. Some DDX family members have been identified for their crucial roles in viral infections. In this study, RNAi library screening of the DDX family unveiled the antiviral activity of DDX20. Knockdown of DDX20 enhanced the replication of viruses such as vesicular stomatitis virus (VSV) and herpes simplex virus type I (HSV-1), while overexpression of DDX20 significantly diminished the replication level of these viruses. Mechanistically, DDX20 elevated the phosphorylation level of IRF3 induced by external stimuli by facilitating the interaction between TBK1 and IRF3, thereby promoting the expression of IFN-ß. The increased IFN-ß production, in turn, upregulated the expression of interferon-stimulated genes (ISGs), including Cig5 and IFIT1, thereby exerting the antiviral effect. Finally, in an in vivo infection study, Ddx20 gene-deficient mice exhibited increased susceptibility to viral infection. This study provides new evidence that DDX20 positively modulates the interferon pathway and restricts viral infection.


Herpesvirus 1, Human , Interferon Type I , Virus Diseases , Animals , Mice , Interferons/metabolism , Interferon-beta/metabolism , Signal Transduction , Dichlorodiphenyl Dichloroethylene/metabolism , Virus Replication , Herpesvirus 1, Human/genetics , Antiviral Agents/metabolism , Immunity, Innate , Interferon Regulatory Factor-3/metabolism , Interferon Type I/metabolism , DEAD Box Protein 20/metabolism
14.
Cells ; 13(6)2024 03 19.
Article En | MEDLINE | ID: mdl-38534383

Foot-and-mouth disease (FMD) is a highly contagious and economically important disease of cloven-hoofed animals that hampers trade and production. To ensure effective infection, the foot-and-mouth disease virus (FMDV) evades host antiviral pathways in different ways. Although the effect of histone deacetylase 5 (HDAC5) on the innate immune response has previously been documented, the precise molecular mechanism underlying HDAC5-mediated FMDV infection is not yet clearly understood. In this study, we found that silencing or knockout of HDAC5 promoted FMDV replication, whereas HDAC5 overexpression significantly inhibited FMDV propagation. IFN-ß and IFN-stimulated response element (ISRE) activity was strongly activated through the overexpression of HDAC5. The silencing and knockout of HDAC5 led to an increase in viral replication, which was evident by decreased IFN-ß, ISG15, and ISG56 production, as well as a noticeable reduction in IRF3 phosphorylation. Moreover, the results showed that the FMDV capsid protein VP1 targets HDAC5 and facilitates its degradation via the proteasomal pathway. In conclusion, this study highlights that HDAC5 acts as a positive modulator of IFN-ß production during viral infection, while FMDV capsid protein VP1 antagonizes the HDAC5-mediated antiviral immune response by degrading HDAC5 to facilitate viral replication.


Foot-and-Mouth Disease Virus , Foot-and-Mouth Disease , Interferon Type I , Animals , Capsid Proteins/metabolism , Signal Transduction , Foot-and-Mouth Disease/metabolism , Immunity, Innate , Interferon Type I/metabolism
15.
Viruses ; 16(3)2024 Mar 01.
Article En | MEDLINE | ID: mdl-38543756

CD8+ T cells are critical to the adaptive immune response against viral pathogens. However, overwhelming antigen exposure can result in their exhaustion, characterised by reduced effector function, failure to clear virus, and the upregulation of inhibitory receptors, including programmed cell death 1 (PD-1). However, exhausted T cell responses can be "re-invigorated" by inhibiting PD-1 or the primary ligand of PD-1: PD-L1. Further, the absence of the type I interferon receptor IFNAR1 also results in T cell exhaustion and virus persistence in lymphocytic choriomeningitis virus Armstrong (LCMV-Arm)-infected mice. In this study, utilizing single- and double-knockout mice, we aimed to determine whether ablation of PD-1 could restore T cell functionality in the absence of IFNAR1 signalling in LCMV-Arm-infected mice. Surprisingly, this did not re-invigorate the T cell response and instead, it converted chronic LCMV-Arm infection into a lethal disease characterized by severe lung inflammation with an infiltration of neutrophils and T cells. Depletion of CD8+ T cells, but not neutrophils, rescued mice from lethal disease, demonstrating that IFNAR1 is required to prevent T cell exhaustion and virus persistence in LCMV-Arm infection, and in the absence of IFNAR1, PD-L1 is required for survival. This reveals an important interplay between IFNAR1 and PD-L1 with implications for therapeutics targeting these pathways.


Interferon Type I , Lymphocytic Choriomeningitis , Mice , Animals , Lymphocytic choriomeningitis virus , CD8-Positive T-Lymphocytes , B7-H1 Antigen/genetics , B7-H1 Antigen/metabolism , Programmed Cell Death 1 Receptor/genetics , Programmed Cell Death 1 Receptor/metabolism , Mice, Knockout , Interferon Type I/metabolism , Mice, Inbred C57BL
16.
Cell ; 187(8): 1936-1954.e24, 2024 Apr 11.
Article En | MEDLINE | ID: mdl-38490196

Microglia are brain-resident macrophages that shape neural circuit development and are implicated in neurodevelopmental diseases. Multiple microglial transcriptional states have been defined, but their functional significance is unclear. Here, we identify a type I interferon (IFN-I)-responsive microglial state in the developing somatosensory cortex (postnatal day 5) that is actively engulfing whole neurons. This population expands during cortical remodeling induced by partial whisker deprivation. Global or microglial-specific loss of the IFN-I receptor resulted in microglia with phagolysosomal dysfunction and an accumulation of neurons with nuclear DNA damage. IFN-I gain of function increased neuronal engulfment by microglia in both mouse and zebrafish and restricted the accumulation of DNA-damaged neurons. Finally, IFN-I deficiency resulted in excess cortical excitatory neurons and tactile hypersensitivity. These data define a role for neuron-engulfing microglia during a critical window of brain development and reveal homeostatic functions of a canonical antiviral signaling pathway in the brain.


Brain , Interferon Type I , Microglia , Animals , Mice , Interferon Type I/metabolism , Microglia/metabolism , Neurons/metabolism , Zebrafish , Brain/cytology , Brain/growth & development
17.
J Innate Immun ; 16(1): 226-247, 2024.
Article En | MEDLINE | ID: mdl-38527452

INTRODUCTION: While TLR ligands derived from microbial flora and pathogens are important activators of the innate immune system, a variety of factors such as intracellular bacteria, viruses, and parasites can induce a state of hyperreactivity, causing a dysregulated and potentially life-threatening cytokine over-response upon TLR ligand exposure. Type I interferon (IFN-αß) is a central mediator in the induction of hypersensitivity and is strongly expressed in splenic conventional dendritic cells (cDC) and marginal zone macrophages (MZM) when mice are infected with adenovirus. This study investigates the ability of adenoviral infection to influence the activation state of the immune system and underlines the importance of considering this state when planning the treatment of patients. METHODS: Infection with adenovirus-based vectors (Ad) or pretreatment with recombinant IFN-ß was used as a model to study hypersensitivity to lipopolysaccharide (LPS) in mice, murine macrophages, and human blood samples. The TNF-α, IL-6, IFN-αß, and IL-10 responses induced by LPS after pretreatment were measured. Mouse knockout models for MARCO, IFN-αßR, CD14, IRF3, and IRF7 were used to probe the mechanisms of the hypersensitive reaction. RESULTS: We show that, similar to TNF-α and IL-6 but not IL-10, the induction of IFN-αß by LPS increases strongly after Ad infection. This is true both in mice and in human blood samples ex vivo, suggesting that the regulatory mechanisms seen in the mouse are also present in humans. In mice, the scavenger receptor MARCO on IFN-αß-producing cDC and splenic marginal zone macrophages is important for Ad uptake and subsequent cytokine overproduction by LPS. Interestingly, not all IFN-αß-pretreated macrophage types exposed to LPS exhibit an enhanced TNF-α and IL-6 response. Pretreated alveolar macrophages and alveolar macrophage-like murine cell lines (MPI cells) show enhanced responses, while bone marrow-derived and peritoneal macrophages show a weaker response. This correlates with the respective absence or presence of the anti-inflammatory IL-10 response in these different macrophage types. In contrast, Ad or IFN-ß pretreatment enhances the subsequent induction of IFN-αß in all macrophage types. IRF3 is dispensable for the LPS-induced IFN-αß overproduction in infected MPI cells and partly dispensable in infected mice, while IRF7 is required. The expression of the LPS co-receptor CD14 is important but not absolutely required for the elicitation of a TNF-α over-response to LPS in Ad-infected mice. CONCLUSION: Viral infections or application of virus-based vaccines induces type I interferon and can tip the balance of the innate immune system in the direction of hyperreactivity to a subsequent exposure to TLR ligands. The adenoviral model presented here is one example of how multiple factors, both environmental and genetic, affect the physiological responses to pathogens. Being able to measure the current reactivity state of the immune system would have important benefits for infection-specific therapies and for the prevention of vaccination-elicited adverse effects.


Adenoviridae , Cytokines , Interferon Regulatory Factor-3 , Lipopolysaccharides , Macrophages , Mice, Knockout , Animals , Mice , Lipopolysaccharides/immunology , Humans , Interferon Regulatory Factor-3/metabolism , Interferon Regulatory Factor-3/genetics , Macrophages/immunology , Cytokines/metabolism , Mice, Inbred C57BL , Interferon Regulatory Factor-7/metabolism , Interferon Regulatory Factor-7/genetics , Genetic Vectors , Adenoviridae Infections/immunology , Interferon Type I/metabolism , Lipopolysaccharide Receptors/metabolism , Receptor, Interferon alpha-beta/genetics , Receptor, Interferon alpha-beta/metabolism , Cells, Cultured , Dendritic Cells/immunology , Interferon-beta/metabolism
18.
Front Immunol ; 15: 1338096, 2024.
Article En | MEDLINE | ID: mdl-38495892

Type III interferon (IFN-λ), a new member of the IFN family, was initially considered to possess antiviral functions similar to those of type I interferon, both of which are induced via the JAK/STAT pathway. Nevertheless, recent findings demonstrated that IFN-λ exerts a nonredundant antiviral function at the mucosal surface, preferentially produced in epithelial cells in contrast to type I interferon, and its function cannot be replaced by type I interferon. This review summarizes recent studies showing that IFN-λ inhibits the spread of viruses from the cell surface to the body. Further studies have found that the role of IFN-λ is not only limited to the abovementioned functions, but it can also can exert direct and/or indirect effects on immune cells in virus-induced inflammation. This review focuses on the antiviral activity of IFN-λ in the mucosal epithelial cells and its action on immune cells and summarizes the pathways by which IFN-λ exerts its action and differentiates it from other interferons in terms of mechanism. Finally, we conclude that IFN-λ is a potent epidermal antiviral factor that enhances the respiratory mucosal immune response and has excellent therapeutic potential in combating respiratory viral infections.


Interferon Type I , Virus Diseases , Humans , Interferon Lambda , Janus Kinases/metabolism , Signal Transduction , STAT Transcription Factors/metabolism , Interferon Type I/metabolism , Epithelium/metabolism , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use
19.
Mol Biol Rep ; 51(1): 453, 2024 Mar 27.
Article En | MEDLINE | ID: mdl-38536553

BACKGROUND: Type I interferons (IFNs) are an essential class of cytokines with antitumor, antiviral and immunoregulatory effects. However, over-productive the type I IFNs are tightly associated with autoimmune disorders. Thus, the induction of type I interferons is precisely regulated to maintain immune hemostasis. This study aimed to identify a novel regulator of type I interferon signaling. METHODS AND RESULTS: Primary BMDMs, isolated from mice, and human cell lines (HEK293 cells, Hela cells) and murine cell line (MEF cells) were cultured to generate in vitro models. After knockdown VRK1, real-time PCR and dual-luciferase reporter assay were performed to determine the expression level of the type I IFNs and ISGs following HTDNA and Poly (dA:dT) stimulation. Additionally, cells were treated with the VRK1 inhibitor, and the impact of VRK1 inhibition was detected. Upon HTDNA and Poly (dA:dT) stimulation, knockdown of VRK1 attenuated the induction of the type I IFNs and ISGs. Consistently, VRK-IN-1, a potent and selective VRK1 inhibitor, significantly suppressed the induction of the type I IFNs and ISGs in human and murine cell lines. Further, VRK-IN-1 inhibited induction of the type I IFNs in mouse primary BMDMs. Intriguingly, VRK1 potentiated the cGAS-STING- IFN-I axis response at STING level. CONCLUSIONS: Our study reveals a novel function of VRK1 in regulating the production of type I IFNs. VRK-IN-1 might be a potential lead compound for suppressing aberrant type I IFNs in autoimmune disorders.


Autoimmune Diseases , Interferon Type I , Protein Serine-Threonine Kinases , Animals , Humans , Mice , DNA/metabolism , HEK293 Cells , HeLa Cells , Interferon Type I/metabolism , Interferons , Intracellular Signaling Peptides and Proteins/metabolism , Protein Serine-Threonine Kinases/metabolism
20.
PLoS Pathog ; 20(3): e1012128, 2024 Mar.
Article En | MEDLINE | ID: mdl-38547254

Porcine reproductive and respiratory syndrome virus (PRRSV) is known to suppress the type I interferon (IFNs-α/ß) response during infection. PRRSV also activates the NF-κB signaling pathway, leading to the production of proinflammatory cytokines during infection. In swine farms, co-infections of PRRSV and other secondary bacterial pathogens are common and exacerbate the production of proinflammatory cytokines, contributing to the porcine respiratory disease complex (PRDC) which is clinically a severe disease. Previous studies identified the non-structural protein 1ß (nsp1ß) of PRRSV-2 as an IFN antagonist and the nucleocapsid (N) protein as the NF-κB activator. Further studies showed the leucine at position 126 (L126) of nsp1ß as the essential residue for IFN suppression and the region spanning the nuclear localization signal (NLS) of N as the NF-κB activation domain. In the present study, we generated a double-mutant PRRSV-2 that contained the L126A mutation in the nsp1ß gene and the NLS mutation (ΔNLS) in the N gene using reverse genetics. The immunological phenotype of this mutant PRRSV-2 was examined in porcine alveolar macrophages (PAMs) in vitro and in young pigs in vivo. In PAMs, the double-mutant virus did not suppress IFN-ß expression but decreased the NF-κB-dependent inflammatory cytokine productions compared to those for wild-type PRRSV-2. Co-infection of PAMs with the mutant PRRSV-2 and Streptococcus suis (S. suis) also reduced the production of NF-κB-directed inflammatory cytokines. To further examine the cytokine profiles and the disease severity by the mutant virus in natural host animals, 6 groups of pigs, 7 animals per group, were used for co-infection with the mutant PRRSV-2 and S. suis. The double-mutant PRRSV-2 was clinically attenuated, and the expressions of proinflammatory cytokines and chemokines were significantly reduced in pigs after bacterial co-infection. Compared to the wild-type PRRSV-2 and S. suis co-infection control, pigs coinfected with the double-mutant PRRSV-2 exhibited milder clinical signs, lower titers and shorter duration of viremia, and lower expression of proinflammatory cytokines. In conclusion, our study demonstrates that genetic modification of the type I IFN suppression and NF-κB activation functions of PRRSV-2 may allow us to design a novel vaccine candidate to alleviate the clinical severity of PRRS-2 and PRDC during bacterial co-infection.


Coinfection , Interferon Type I , Porcine Reproductive and Respiratory Syndrome , Porcine respiratory and reproductive syndrome virus , Swine , Animals , Porcine respiratory and reproductive syndrome virus/metabolism , Cytokines/genetics , Cytokines/metabolism , NF-kappa B/genetics , NF-kappa B/metabolism , Macrophages, Alveolar/metabolism , Interferon Type I/metabolism , Porcine Reproductive and Respiratory Syndrome/genetics , Porcine Reproductive and Respiratory Syndrome/metabolism
...